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Automorphism Groups of Orthomodular Lattices
Obtained from Quadratic Spaces

Jean-Claude Carrega1

We study the automorphism group of some orthomodular lattices, obtained from a
quadratic space over a field K . We show how this group is linked to the semi-orthogonal
group and with the group of all similarity transformations of the quadratic space. When
the field K is finite, the cardinality of the automorphism group is given.
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1. INTRODUCTION

In Carrega et al. (2004), the authors introduce the orthomodular lattice
(abbr. OML), denoted T (E, ϕ), where ϕ : E × E → K is a regular, symmetric
bilinear form and E a three-dimensional vector space on any field K . A structure
theorem concerning the subalgebras of T (E, ϕ) allows them to obtain infinitely
many lattices T (E, ϕ) which are minimal, that is, T (E, ϕ) is not modular and all
its proper subalgebras are modular. In Carrega and Greechie, the authors study the
lattices T (E, ϕ) when K is a finite field. Here we study the automorphism group
of the lattices T (E, ϕ).

The general reference for Orthomodular lattices are Kalmbach (1982) and
Ptak et al. (1990).

2. THE ORTHOMODULAR LATTICES T (E, ϕ)

Denote by K any field, char (K) its characteristic and |K| its cardinality. Let
E be a three-dimensional vector-space and ϕ : E × E → K a regular, symmetric
bilinear form and Q : E → K the corresponding quadratic form. Denote by δ(Q)
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the discriminant of Q, defined, up to a square of K , by the determinant of the
matrix of Q in any basis of E.

Denote by L(E, ϕ) the modular lattice of all the subspaces of E, equipped
with the polarity M �→ M⊥ where M⊥ = {u ∈ E | ∀v ∈ M , ϕ(u, v) = 0}. The
elements of L(E, ϕ) are {0} , E and for all u ∈ E, u �= 0, Ku and (Ku)⊥. For the
projective structure of L(E, ϕ), the atom Ku is a point and the coatom (Ku)⊥ is
a projective line.

The form ϕ is regular but it can provide isotropic vectors, that is vectors u �= 0
such that Q(u) = 0. In particular, when K is finite or algebraically closed there are
isotropic vectors. The isotropic subspaces of E, that is, the subspaces M such that
M ∩ M⊥ = {0}, are the Ku and the (Ku)⊥ with u an isotropic vector. Following
Baer (1952, p. 106), a subspace M is called an N-subspace if all nonzero vectors
of M are isotropic.

The following results can be found in Carrega et al. (2004). If T (E, ϕ)
denotes the set of all M ∈ L(E, ϕ) such that both M and M⊥ are not N -subspaces
then (T (E, ϕ),⊂,⊥) is an orthomodular lattice (OML). In the lattice T (E, ϕ),
Ku ∨T Kv = E means that the two atoms Ku and Kv are orthogonal to a same
isotropic atom in L(E, ϕ).

Let T ′(E, ϕ) be the set of all nonisotropic M ∈ L(E, ϕ). If char (K) = 2
and if {ω ∈ E,ω isotropic} ∪ {0} is a two-dimensional subspace of E, denoted by
a0

⊥, then T ′(E, ϕ) is the horizontal sum of T (E, ϕ) and the four-element Boolean
algebra {{0}, E, a0, a0

⊥}. In the other cases T ′(E, ϕ) = T (E, ϕ).
These OMLs were studied with Richard Greechie and René Mayet. They are

interesting since they allow us to provide infinitely many minimal OMLs useful
for the covering of the equational classes [MOn].

3. AUTOMORPHISM GROUPS AND SIMILAR FORMS

Now we want to determine the automorphism group Aut(T (E, ϕ)). The
group Aut(T ′(E, ϕ)) is the same or is obtained by a product with a two-element
group.

We denote by Aut⊥(L(E, ϕ)) the automorphism group of the lattice L(E, ϕ)
equipped with the polarity M �→ M⊥; thus g ∈ Aut⊥(L(E, ϕ)) means g is an au-
tomorphism of the lattice L(E, ϕ) and, for any M ∈ L(E, ϕ), g(M⊥) = (g(M))⊥.

Denote by �(E) the set of all the regular, symmetric, bilinear forms on E. Two
forms ϕ and ϕ′ in �(E) are called similar if the lattices with polarity (L(E, ϕ),⊥)
and (L(E, ϕ′),⊥) are isomorphic. This implies that the groups Aut⊥(L(E, ϕ)) and
Aut⊥(L(E, ϕ′)) are isomorphic and the groups Aut(T (E, ϕ)) and Aut(T (E, ϕ′))
are isomorphic.

The relation “ϕ similar to ϕ′” is an equivalent relation on �(E). For the study,
up to isomorphism, of the groups Aut⊥(L(E, ϕ)) and Aut(T (E, ϕ)) it is possible to
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change the form ϕ for a simpler similar form.The following results can be found
in Carrega et al. (2004).

• If K is finite, there exists only one class of similar forms: More precisely
every form ϕ in �(E) is similar to the canonical form defined in some
basis of E by ϕ′(u, u′) = xx ′ + yy ′ + zz′.

• If K = R, there exist only two classes of similar forms represented by the
forms expressed in some basis of E by xx ′ + yy ′ + zz′ and xx ′ + yy ′ −
zz′.

• If K = Q, there exists only one class of similar forms having isotropic
vectors, represented by the form expressed in some basis of E by xx ′ +
yy ′ − zz′.

4. ABOUT THE ISOTROPIC ATOMS IN L(E, ϕ)

Let u ∈ E, u �= 0, (Ku)⊥ is a projective line in L(E, ϕ). If (Ku)⊥ = a0
⊥

(defined in Section 2), all the atoms of (Ku)⊥ are isotropic. In the other cases the
number of isotropic atoms in (Ku)⊥ is given by the following proposition. Recall
that Q is the quadratic form associated to ϕ and δ(Q) the discriminant of Q.

Proposition 1. The number of isotropic atoms in a projective line (Ku)⊥, dif-
ferent from (a0)⊥, is given by the following.

1. If Q(u) = 0, then Ku is the only isotropic atom in (Ku)⊥.

2. If
−Q(u)

δ(Q)
is a nonzero square in K, (Ku)⊥ has two isotropic atoms if

char(K) �= 2 and one if char(K) = 2.

3. If
−Q(u)

δ(Q)
is not a square in K, (Ku)⊥ has no isotropic atoms.

Proof: For the proof we need a formula which generalizes the Euclidean case.
Let B = (e1, e2, e3) be an orthogonal basis of E. If u = xe1 + ye2 + ze3 and u′ =
x ′e1 + y ′e2 + z′e3, we have ϕ(u, u′) = axx ′ + byy ′ + czz′ with a = Q(e1), b =
Q(e2), c = Q(e3). As in Euclidean geometry, one can define a wedge product
on E (u, u′) �→ u × u′ by setting u × u′ = bc(yz′ − zy ′)e1 + ac(xz′ − zx ′)e2 +
ab(xy ′ − yx ′)e3. One verifies that ϕ(u, u × u′) = ϕ(u′, u × u′) = 0, then u × u′

is orthogonal to u and u′. It is easy to verify the formula

ϕ2(u, u′) + Q(u × u′)
δ(Q)

= Q(u)Q(u′)( here δ(Q) = abc).

Let (Ku)⊥ be a projective line different from a0
⊥; let v and w be two noncollinear

vectors in (Ku)⊥ with v nonisotropic. The mapping λ �→ K(λv + w) is a bijection
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from K onto the set of the atoms of (Ku)⊥ different from Kv. We have:

K(λv + w) isotropic ⇐⇒ Q(λv + w) = 0 ⇐⇒ λ2Q(v) + 2λϕ(v,w)

+Q(w) = 0.

We have a second degree equation with �′ = ϕ2(v,w) − Q(v)Q(w). From
the previous formula �′ = −Q(v×w)

δ(Q) . As v × w is collinear to u, we have, up to a

square, �′ = −Q(u)
δ(Q) .

1. If �′ = 0, then the equation has one root, hence there is only one isotropic
atom in (Ku)⊥ and this isotropic atom is Ku.

2. If �′ is a nonzero square, then the equation has two roots, but if char(K) =
2 the two roots coincide. Hence there are two isotropic atoms in (Ku)⊥ if
char(K) �= 2 and only one if char(K) = 2.

3. If �′ is not a square, then the equation has none roots, hence there are
none isotropic atoms in (Ku)⊥. �

5. GROUPS LINKED TO THE QUADRATIC SPACE (E, ϕ)

A mapping f : E → E is called semi-linear if there exists σ ∈ Aut(K) such
that, for all u, v ∈ E and λ ∈ K , f (u + v) = f (u) + f (v) and f (λu) = σ (λ)f (u).
The mapping f is called σ -linear.

A σ -linear mapping f : E → E is called semi-orthogonal if for all u and v

in E ϕ(f (u), f (v)) = σ (ϕ(u, v)). The mapping f is called σ -orthogonal. When
σ = idK , f is called orthogonal.

Let k ∈ K , k �= 0, a σ -linear mapping f : E → E is called a similarity of
coefficient k if, for all u and v ∈ E, ϕ(f (u), f (v)) = kσ (ϕ(u, v)). For instance, an
homothetic transformation of ratio h is a similarity of coefficient k = h2.

Orthogonal, semi-orthogonal, homothetic transformations and similarity are
bijections onto E and we can consider the following groups:

• O(E, ϕ) , the group of all orthogonal mappings.
• Os(E, ϕ), the group of all semi-orthogonal mappings.
• Sim(E, ϕ), the group of all similarities transformations.
• Hom(E), the group of all homothetic transformations.

We have O(E, ϕ) ⊂ Os(E, ϕ) ⊂ Sim(E, ϕ) and Hom(E) ⊂ Sim(E, ϕ).

6. ISOMORPHISMS

Proposition 2. If K �= F3 (the three-element field) then Aut(T (E, ϕ)) is
isomorphic to Aut⊥(L(E, ϕ)).
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Proof: An automorphism g : T (E, ϕ) → T (E, ϕ) can be extended to a unique
automorphism ḡ : L(E, ϕ) → L(E, ϕ).

For defining ḡ(Kω) for an isotropic atom Kω, we consider the set A of all
the nonisotropic atoms in the isotropic line (Kω)⊥. For a and b in A, a �= b, we
have a ∨T b = E where a ∨T b means the join in the lattice T (E, ϕ). As g is
an automorphism of T (E, ϕ), we have g(a) ∨T g(b) = E. This implies that the
atoms g(a) and g(b) belong to a same isotropic line (Kω′)⊥; then the atoms g(a),
for a ∈ E, belong pairwise to a same isotropic line.

If char(K) = 2, then, by Proposition 1, each atom g(a) belongs to only one
isotropic line, then all the atoms g(a), for a ∈ E, belong to the same isotropic line
(Kω′)⊥. We define ḡ(Kω) by ḡ(Kω) = Kω′.

If char(K) �= 2, then, by Proposition 1, each atom g(a) belongs to two
isotropic lines and these atoms are pairwise in a same isotropic line. Then K �= F3

implies that all the atoms g(a), for a ∈ E, belong to the same isotropic line
(Kω′)⊥. We define ḡ(Kω) by ḡ(Kω) = Kω′. For an isotropic line (Kω)⊥, we
define ḡ((Kω)⊥) by ḡ((Kω)⊥) = (ḡ(Kω))⊥.

In the case where the atom a0 exists, necessarily we have to set ḡ(a0) = a0,
since a0 is orthogonal to each isotropic atom and the set of all isotropic atoms is
invariant under ḡ. We define ḡ((a0)⊥) by ḡ((a0)⊥) = (a0)⊥. This definition of ḡ

is necessary in order to preserve orthogonality and that implies the unicity of ḡ.
Now, it si easy to verify that the extension ḡ of g is an element of Aut⊥(L(E, ϕ))
and that the mapping g �→ ḡ is a group isomorphism from Aut(T (E, ϕ)) to
Aut⊥(L(E, ϕ)). �

Proposition 3. The group Aut⊥(L(E, ϕ)) is isomorphic to the quotient group
Sim(E, ϕ)/Hom(E).

Proof: We consider ψ : Sim(E, ϕ) → Aut⊥(L(E, ϕ)) defined by ψ(f ) = f̄

where f̄ (M) = {f (u)|u ∈ M}.
For proving that ψ is onto, let g ∈ Aut⊥(L(E, ϕ)). Then

• there exists f σ -linear such that g = f̄ and the other mappings f ′ such
that g = f̄ ′ are given by f ′ = df with d ∈ K∗ (Baer, 1952, p. 44),

• there exists k ∈ K such that for all u, v in E ϕ(f (u), f (v)) = kσ (ϕ(u, v)).
The proof can be found in Varadarajan (1968) in a more general case,
Theorem 3.1, p. 35.

If ψ(f ) = idL(E,ϕ), by the previous Baer result, we have f = d idE and f ∈
Hom(E) . �

Remark. When k is a square, for all g, it is possible to obtain a similar result with
the group Os(E, ϕ) instead of the group Sim(E, ϕ). Conditions for that will be
given in the following proposition.
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Proposition 4. A link between Aut⊥(L(E, ϕ)) and Os(E, ϕ) is the following:

1. If K is algebraically closed, or if every element of K is a square,
2. If K is finite,
3. If K = R,
4. If K = Q and if the form ϕ has isotropic vectors

there exists a form ϕ′ similar to ϕ such that Aut⊥(L(E, ϕ)) is isomorphic to the
quotient group Os(E, ϕ′)/{idE,−idE}.
Proof: As in Proposition 3, we consider, for a form ϕ′ similar to ϕ, the mapping
ψ : Os(E, ϕ′) → Aut⊥(L(E, ϕ′)) defined by ψ(f ) = f where f (M) = {f (u) |
u ∈ M}.

For proving that ψ is onto, let g ∈ Aut⊥(L(E, ϕ′)). Then there exists a
σ−linear mapping f such that g = f and there exists k ∈ K such that for all u, v

in E, ϕ′(f (u), f (v)) = kσ (ϕ′(u, v)) (1). When v = u the formula (1) becomes:
For all u in E Q′(f (u)) = kσ (Q′(u)) (2) where Q′ is the quadratic form

associated to ϕ′. It follows from these relations that
“u isotropic” ⇐⇒ “f (u) isotropic” and
“v isotropic and orthogonal to u”⇐⇒ “f (v) isotropic and orthogonal to

f (u),” where the words isotropic and orthogonal refer to the form ϕ′. Then,
for u �= 0, the vectors u and f (u) are of the same type: isotropic, nonisotropic
and orthogonal to isotropic vectors, nonisotropic and nonorthogonal to isotropic
vectors. By Proposition 1, it follows that for each nonisotropic vector u in E the
elements of K , −Q′(u)

δ(Q′) , and −Q′f (u))
δ(Q′) , are both squares or are both nonsquares. In

each case given in Proposition 4, we will prove that we can choose ϕ′ such that
the element k in the relations (1) and (2) is a square.

In case (1), if every element of K is a square, the result is obvious, we choose
ϕ′ = ϕ.

In cases (2), (3), (4), from Section 3, we can choose a form ϕ′ similar
to ϕ defined in some basis of E by ϕ′(u, u′) = xx ′ + yy ′ + zz′ or ϕ′(u, u′) =
xx ′ + yy ′ − zz′. For these two forms δ(Q′) = ±1 and the relation (2) can be
written −Q′(f (u))

δ(Q′) = k σ (−Q′(u)
δ(Q′) ) (3). Then, for every nonisotropic vector u, k is a

quotient of two elements of K which are both squares or nonsquares. In cases (2)
and (3) this implies that k is a square, because in a finite field or in the field R the
quotient of two nonsquares is a square. In case (4) with K = Q, we have choosen
the form expressed in some basis B = (e1, e2, e3) by ϕ′(u, u′) = xx ′ + yy ′ − zz′.
With this form we have Q′(e1) = 1, δ(Q′) = −1 and −Q′(e1)

δ(Q′) = 1 is a square, then
relation (3), written with u = e1, implies that k is a square.

Then we set k = d−2 for d ∈ K and we have, by using relation (1), for all u, v

in E, ϕ′(df (u), df (v)) = σ (ϕ′(u, v)). Then df ∈ Os(E, ϕ′) and g = f = df .
If f ∈ Ker(ψ), then f = idE and by a result of Baer (1952, p. 44), we

have f = h idE with h ∈ K∗. As f is linear and belongs to Os(E, ϕ), we have
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f ∈ O(E, ϕ). Then, for all u and v in E we have ϕ′(hu, hv) = ϕ′(u, v) and this
implies h2 = 1, h = ±1 and Ker(ψ) = {±idE}. �

Remarks.

(1) If all elements of K are squares, then ϕ′ = ϕ.
(2) If K = R or K = Q, then Os(E, ϕ′) = O(E, ϕ′).
(3) If char(K) = 2, then Os(E, ϕ′)/{idE,−idE} = Os(E, ϕ′).

From Propositions 2 and 3 we obtain :

Theorem 1. If K �= F3, Aut(T (E, ϕ)) is isomorphic to Sim(E, ϕ)/Hom(E).

From Propositions 2 and 4 we obtain :

Theorem 2. A link between Aut(T (E, ϕ)) and Os(E, ϕ) is the following:

1. If K is algebraically closed, or if every element of K is a square,
2. If K is finite and K �= F3,
3. If K = R,
4. If K = Q and if the form ϕ has isotropic vectors

there exists a form ϕ′ similar to ϕ such that Aut(T (E, ϕ)) is isomorphic to the
quotient group Os(E, ϕ′)/{idE,−idE}.

7. CARDINALITY OF AUT(T (E, ϕ)) WHEN K IS FINITE

When K is a finite field, |K| = q = pn with p a prime number and n ≥ 1.
Up to isomorphism, the orthomodular lattice T (E, ϕ) is independent of the regular
and symmetric bilinear form ϕ; it depends only on the field K , for that we denote
T (E, ϕ) = Tq .

We can take for ϕ a canonical form given in a basis B = (e1, e2, e3) by

ϕ(xe1 + ye2 + ze3, x
′e1 + y ′e2 + z′e3) = xx ′ + yy ′ + zz′

and

Q(xe1 + ye2 + ze3) = x2 + y2 + z2.

Theorem 3. For q = pn, if q �= 3, then |Aut(Tq)| = nq(q2 − 1).

Proof:

• From the homomorphism f �−→ σf from Os(E, ϕ) to Aut(K), we obtain
|Os(E, ϕ)| = |O(E, ϕ)||Aut(K)|.



2164 Carrega

• If p �= 2, from Theorem 2, |Aut(Tq)| = 1
2 |Os(E, ϕ)| and from the previous

result |Aut(Tq)| = 1
2 |O(E, ϕ)||Aut(K)|.

The cardinality |O(E, ϕ)| is the number of ordered orthogonal bases
(ε1, ε2, ε3) of E such that Q(εi) = 1 for i = 1, 2, 3. The number of blocks
of Tq corresponding to (Kε1,Kε2,Kε3) is q(q2−1)

24 , then |Os(E, ϕ)| =
23 × 3! q(q2−1)

24 = 2q(q2 − 1). On the other hand, we have |Aut(K)| = n,
hence |Aut(Tq)| = nq(q2 − 1).

• If p = 2, from Theorem 2,

|Aut(Tq)| = |O(E, ϕ)||Aut(K)|

with |O(E, ϕ)| = 3! q(q2−1)
6 = q(q2 − 1) and |Aut(K)| = n and therefore

we obtain the same result |Aut(Tq)| = nq(q2 − 1). �

Remarks.

(1) The Greechie diagram of T3 is the following

� � �

� � �

� � �

and for this OML, Theorem 3 does not work, but directly we can find
|Aut(T3)| = 23 × 3! = 48.

(2) We know that T4 = G32 and that Aut(G32) is isomorphic to the symmet-
ric group S5, hence |Aut(T4)| = 120. The same result is given by the
formula nq(q2 − 1) with q = 4 and n = 2.

The following theorem explains why the OMLs Tq are symmetric. But before
the theorem we have to recall some things about the OMLs Tq .

• When q = pn is odd (p �= 2), there are in Tq two kinds of atoms according
to the number of blocks passing through, and that implies two kinds of
blocks.

• When q = 2n, there is one kind of atom and one kind of block.
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Theorem 4. If B and B ′ are two blocks of Tq of the same type, there exists
g ∈ Aut(Tq) such that g(B) = B ′.

Roughly speaking this theorem says that blocks of the same type play the
same role.

Proof: As the two blocks B and B ′ are of the same type, it is possible to find
vectors, representing the atoms of these blocks, such that B = (Kε1,Kε2,Kε3),
B ′ = (Kε′

1,Kε′
2,Kε′

3) and, for i = 1, 2, 3, Q(εi) = Q(ε′
i). Then the linear map-

ping f sending the orthogonal basis (ε1, ε2, ε3) to the orthogonal basis (ε′
1, ε

′
2, ε

′
3)

is in O(E, ϕ). Define g by g = f̄ , that is, g(M) = {f (u)/u ∈ M}, we have g in
Aut(Tq) and we have, for i = 1, 2, 3, g(Kεi) = Kε′

i . �
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